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Abstract--Structural analyses of shear zones often rely on an assumption of steady-state behavior, i.e. that the ratio 
of pure shear strain rate(s) to simple shear strain rate(s) remains fixed throughout deformation. However, 
geological deformations are not necessarily steady state. Non-steady-state deformation paths can be theoretically 
modeled if certain deformation parameters, such as strain or offset, are specified. We have analyzed a two- 
dimensional case of specified offset and geometry, termed the minimum strain path. The minimum finite strain 
needed to produce a fixed offset across a shear zone is neither simple shear nor pure shear, but a combination of the 
two (the minimum strain path). If this deformation accumulates with a steady-state deformation, the kinematic 
vorticity number ( W,) of the minimum strain path varies with the amount of finite offset, although W’, approaches 
0.7 at high offset values. Because of this relation between W, and finite offset, the minimum strain path is better 
modeled as a non-steady-state deformation, in which case deformation history starts close to simple shear but 
rapidly changes to a more pure shear dominated deformation. It is expected that the minimum strain path is 
applicable to geological deformation zones with relaxed boundary conditions, such as basal parts of spreading 
nappes or extensional detachment systems. 0 1997 Elsevier Science Ltd. 

INTRODUCTION 

The recognition that pure shear and simple shear are end- 
members in a spectrum of two-dimensional deformations 
has caused a re-evaluation of deformation paths in 
structural geology. Some attempts have been made to 
quantify deformation history of naturally deformed 
rocks (e.g. Passchier and Urai, 1988; Wallis, 1992). Such 
studies generally indicate that deformation occurred 
through some two-dimensional combination of simple 
shearing and pure shearing, which has been referred to as 
sub-simple shearing (Simpson and De Paor, 1993). This 
approach represents a useful development from consider- 
ing deformation zones as zones of pure shear or simple 
shear. However, most analyses of deformation are based 
on the assumption of steady-state deformation. The 
reason for this is the problem of retrieving information 
about deformation history from naturally deformed 
rocks. Future development would therefore not only 
involve expansion to three-dimensional non-coaxial 
deformation analyses, but also explore non-steady-state 
conditions. 

Steady-state deformation requires that flow para- 
meters such as the velocity field, flow apophyses, 
kinematic vorticity number ( W,) and infinitesimal 
strain axes (ISA) do not change during deformation 
(e.g. Bobyarchick, 1986). In general, however, a given 
state of finite strain can be produced by an infinite 
number of non-steady-state deformation histories, and 
retrieving deformation histories from naturally 

deformed rocks is very difficult. The steady-state alter- 
native therefore serves as a useful reference deformation 
path in lack of a better alternative. Consequently, some 
workers have quantified deformation history of naturally 
deformed rocks through the use of an average kinematic 
vorticity (W,,) (e.g. Passchier and Urai, 1988; Wallis, 
1992). However, non-steady-state deformation can be 
modeled in the forward sense if the changing boundary 
conditions of deformation are specified. 

The best indication of steady-state deformation is 
perhaps one of constant boundary conditions. For 
instance, if the relative motion between two plates is 
constant over an extended period, then the resulting 
deformation zone may approximate steady-state beha- 
vior (e.g. Tikoff and Fossen, 1995). However, there is no a 
priori reason to believe that geological deformation is 
steady state, and there are many deformation settings 
that intuitively should not enhance steady state. These 
include cases involving anisotropic volume loss related to 
compaction, which occurs early in the deformation 
history, or to metamorphic reactions, which depend on 
fluid availability, and P-T conditions that are likely to 
change during deformation. External causes, such as 
changing boundary conditions, would also result in non- 
steady-state deformation. A large-scale example of the 
latter is where the relative motion between two colliding 
plates changes, either gradually or instantaneously 
during a deformation history. In this manuscript, we 
present a method of forward modeling in order to model 
non-steady-state deformation. In particular, we explore 
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the ‘minimum strain path’, which is a sub-simple shear 
deformation that minimizes strain with respect to 
displacement. 

CHARACTERIZING NON-STEADY-STATE 
DEFORMATION 

Characterization of non-steady-state deformation 
requires the knowledge of the velocity field at every time 
interval during deformation. A velocity field is defined by 
the velocity gradient tensor L, which contains compo- 
nents of the stretching (S) and vorticity (W) tensors, such 

that 

L=S+W. 

Steady flow implies that L does not change with time (e.g. 
Means, 1995) and that the acceleration in the shear zone 
is not a major factor (e.g. Jiang, 1994; Ishii, 1995). The 
vorticity component (W) can be subdivided into internal 
or shear-induced vorticity, caused by simple shearing, 
and external vorticity or spin, where the ISA rotate with 
respect to an external frame (e.g. Lister and Williams, 
1983). Since only the internal vorticity is recorded within 
a shear zone (or any volume of homogeneously deformed 
rock), we will only address this quantity in our calcula- 
tions. For ductile shear zones, the orientation of the 
shear-zone boundaries is assumed to be fixed. In other 
words, although the entire shear zone can rotate in space, 
we will keep our reference as the shear-zone boundary 
and not include external spin in vorticity calculations. 

The velocity field, flow apophyses, infinitesimal strain 
axes (ISA) and kinematic vorticity number (B’,; see 
Means et al., 1980 and Tikoff and Fossen, 1995 for a 
closer treatment) can be defined as infinitesimal deforma- 
tion parameters, because their orientations and magni- 
tudes are only given at a single instant or for infinitely 
short period and will change during non-steady deforma- 
tion (Tikoff and Fossen, 1995; Passchier and Trouw, 
1996). The flow apophyses are given as the eigenquan- 
tities (eigenvalues and eigenvectors) of L, the ISA as the 
eigenquantities of S, and W, is a function of all 
components of L. If deformation proceeds in a steady- 
state manner, the infinitesimal deformation parameters 
can be deduced from the orientation of the finite 
deformation parameters (Vissers, 1989; Passchier, 1990; 
Wallis, 1992; Fossen and Tikoff, 1993; Ishii, 1995). 
Figure 1 illustrates these deformation parameters. 

Non-steady-state deformation occurs if the boundary 
conditions (Fig. I) change during deformation. In this 
case, the orientation of most of the infinitesimal deforma- 
tion parameters are likely to change as well (Fig. 1). 
Further, the orientation of the infinitesimal deformation 
parameters can no longer be deduced from the orienta- 
tion of the finite deformation parameters. Rather, the 
finite deformation parameters show a more complex 
pattern, which is still potentially useful in determining 

strain history within the shear zone. 

A special case of non-steady-state plane-strain defor- 
mation involves only changes in the pure shear/simple 
shear ratio (sub-simple shear), where the eigenvectors of 
both flow components have fixed orientations throughout 
deformation. For simplicity, this is the only type of 
deformation that will be considered in this paper. First, 
we analyze sub-simple shear as a steady-state deforma- 
tion. Further, we will address non-steady-state by 
quantifying changes in W, during sub-simple shearing. 
W, is an infinitesimal quantity, recording the relative 
rates of rotation to stretching (e.g. Means et al., 1980; 
Tikoff and Fossen, 1995), and its value will change during 
non-steady-state deformation. In two dimensions, W, 

can be considered as a non-linear relation between the 
pure shear and simple shear components of deformation 
(Tikoff and Fossen, 1995), with W, = 1 implying simple 
shear and Wk = 0 implying pure shear flow. Additionally, 
the orientation of the ISA depend on W,, as does the 
angle between the two flow apophyses (e.g. Bobyarchick, 
1986). Thus, ISA and flow apophyses can also be used to 
quantify two-dimensional non-steady-state deformation. 

MODELING STRAIN HISTORY: THE MINIMUM 
STRAIN PATH 

The accumulation of finite strain in non-steady-state 
(and steady-state) deformations can easily be done with a 
computer, for example by adding small increments of 
deformation, each of which involves a slightly different 
Wk. The problem with this approach is that one must 
assign a kinematic history to the shear zone. Therefore, 
rather than constructing a completely arbitrary non- 
steady-state history for a deforming zone, it is appro- 
priate to construct a geometric problem that utilizes non- 
steady-state deformation. In the example below, we use 
displacement and strain as parameters to construct such a 
geometric problem. 

Strain and offset of geological markers are important 
concepts in structural geology, and are commonly 
obtainable from field observations. They are, for 
instance, important components in restoration and 
modeling of thrust systems, extensional shear zones and 
gravity spreading. It is generally assumed that pure shear 
is the least effective method of creating an offset, while 
simple shear is the most effective (Pfiffner and Ramsay, 
1982). This may be one reason why simple-shear 
deformation is often assumed. Other reasons may be 
that simple shear is easy to handle, and lack of clear 
evidence of deviations from simple shear. However, it is 
possible to theoretically explore plane-strain combina- 
tions of simultaneous pure and simple shearing (sub- 
simple shearing of Simpson and De Paor, 1993) to 
investigate the relation of strain history to offset. 



The minimum strain path 989 

) BOUNDARY CONDITIONS 1 

Y 

[INFINITESIMAL DEFORMATION PARAMETERS 
Velocity field Flow apophyses 

Position multiplied by L Eigenquantites of L 

Y 

Instantaneous strain axes 
Eigenquantites of S 

Y 

Vorticity 
Function of L 

3, 

[FINITE STRAIN 1 
Finite strain axes 

Eigenquantites of DD T 

J-- 

Fig. 1. Strain and flow parameters for sub-simple shearing (pure shear combined with a simple shear). Infinitesimal 
deformation parameters-the velocity field, flow apophyses (APs), infinitesimal strain axes (ISA) and kinematic vorticity- 
will all change during non-steady-state deformation. Finite deformation parameters (finite strain ellipsoid and its orientation) 

will integrate the entire deformation history. 

Steady-state sub-simple shearing hand corner (Fig. 2). The horizontal offset was specified, 
but the vertical height could vary during deformation. 

Before modeling non-steady combinations of simple Assuming steady-state deformation, the computer then 
shear and pure shear, we consider steady-state sub-simple checked all the possible Wk values to the nearest 0.001 
shearing deformations. In order to investigate this and chose the W, value that would minimize the finite 
subject using a computer, we created a box, pinned the strain ellipse for a specified horizontal offset of the upper, 
lower-left corner at the origin and offset the upper right- right-hand corner of the deforming box (Fig. 2). The 
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Fig. 2. Depiction of the finite strain ellipse for (a) simple shear, (b) pure 
shear and (c) sub-simple shear of Pi’, = 0.82 (the minimum strain path 
for offset = 2). For a prescribed offset of the upper, right-hand corner of 
the deforming box, the finite strain ellipse ratio is substantially smaller 
for the minimum strain path (W, = 0.82) than for the two other 

deformation. For a prescribed strain, see Fig. 4. 

minimum strain path, i.e. the strain path that created the 
smallest finite strain, was thus calculated. Simulta- 
neously, the path is also a maximum offset path if strain 
is specified. 

The modeling demonstrated that simple shear pro- 
duces a smaller finite strain than pure shear for an 
identical offset, but that the finite strain is minimized by 
a simultaneous combination of the two (minimum strain 
path, Fig. 2). In other words, for the specified geometry, 
simple shear is not the most effective strain history at 
accumulating offset for a given strain. For example, for 
an offset of 2, the finite strain ellipse ratio is higher for 
either pure shear or simple shear than for a combination 
of the two specified by W, = 0.82 (Figs 2 and 3). 

The relation between displacement, strain and defor- 
mation type is also illustrated in Fig. 4. Here, a rigid 
lower block is overlain by a deformable middle layer, and 
an upper block is allowed to deform if needed. Circles 
and vertical structures provide strain markers. In all of 
the deformed versions, the strain within the middle layer 
is the same (albeit with different orientations of the strain 
ellipse). Hence, the strain is specified here, whereas 
displacement was specified in Fig. 2. 

Simple shear (Fig. 4b) produces a classical shear zone 
with undeformed upper and lower blocks. If pure shear is 
applied to the middle layer and the upper block, a basal 
slip surface develops and the total offset at the end of the 
system becomes larger (Fig. 4~). However, displacement 
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Fig. 3. Finite strain ratio vs offset for simple shear, pure shear and the 
minimum strain path. For a given offset, the finite strain is significantly 
less for the minimum strain path than for the other two deformations. 
The difference in finite strain increases as the offset gets larger. The 
minimum strain path applies to both the steady-state and non-steady- 
state deformations discussed in the text. Offset relates to upper right- 

hand corner of box in Fig. 2 and to black line marker in Fig. 4. 

decreases to the left, and the offset related to the black 
marker is less than for simple shear (Fig. 2). Displace- 
ment vanishes on the pinned left-hand side. 

For a sub-simple shear with W,=O.82 (Fig. 4d), the 
black line is displaced considerably more than for simple 
shear (Fig. 4b) or pure shear (Fig. 4~). Because of the 
pure-shear component, displacement decreases to the left 
also in this case, but the simple-shear component causes 
displacement of the left-hand end of the upper block 
which is of comparable size to that in Fig. 4(b). The right- 
hand end is displaced considerably longer than both the 
simple shear (Fig. 4b) and pure shear (Fig. 4c) examples. 
This example shows how displacement is a relative 
parameter in deformation zones that deviate from 
simple shear, but that the minimum strain path generally 
provides larger displacements than both pure shear and 
simple shear. 

A steady-state deformation of W, = 0.82 corresponded 
to the minimum strain path for an offset of 2 of the upper 
right-hand corner in Fig. 2, or of the black marker in Fig. 
4(d). For a larger or smaller offset, a different steady-state 
W, value minimized the strain (Fig. 5, steady state). For 
example, the lowest strain was provided by a steady-state 
deformation with W, = 0.82 for an offset of 2, W, = 0.74 
for an offset of 5 and W, = 0.72 for an offset of 8. 

Non-steady sub-simple shearing 

With a steady-state deformation, as considered above, 
a rock would have to prejudge its final state to choose the 
correct IV, to maximize its offset-an unlikely event 
except for very clever rocks. Therefore, a non-steady- 
state approach was also simulated on the computer. We 
used the same setup as above, except that in this case an 
incremental (instead of final) offset was applied. The 
computer then checked all the possible IV, values to the 
nearest 0.0001 and chose the W, value that would 
minimize the finite strain ellipse for a specified horizontal 
offset. This was done successively for each offset 
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Middle 

Lower layer 

Fig. 4. (a) Three rock layers prior to deformation with circular and vertical strain markers. (b) Deformation of central layer by 
simple shear. (c) Deformation of both central and upper layer by pure shear. (d) Deformation of the central layer by sub-simple 
shear and the upper layer by pure shear. The strain in the central layer is equal for (bt(d), while displacement is variable. The 
(pure shear) strain in the upper tayer is different in (c) and (d) for compatibility reasons. In (c) and (d) a slip surface or 
stretching fault develops between the lower and middle layers. The total offset is clearly largest in (d). In the minimum strain 
path discussed in the text, we consider the displacement of the black marker, which is largest for sub-simple shear (d) and 
smallest for pure shear (c). Although applicable to any scale, the upper layers may be thought of as a nappe above an 

undeformed basement in (c) and (d). 
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Fig. 5. The effect of offset (see Fig. 2) on kinematic vorticity for both 
steady-state and non-steady-state minimum strain path (sub-simple 
shearing). The steady-state IV, value, which stays fixed throughout the 
steady-state deformation history, is lower with increasing finite offset 
(i.e. each finite offset requires a different IV,). The non-steady-state path 
corresponds to a single strain history in which the IV, value decreases 
continuously. In this case IV, can be approximated by a vorticity 
function. The finite strain, for a given offset, is identical for the steady- 

state and non-steady-state paths. 

increment 0.2 or less, with the initial shear zone width of 
1.0. In order to model non-steady deformation, the IV, 
was allowed to change from one increment to the next. 

The non-steady-state strain path started at W,=O.89 
for the first increment of deformation, as did the steady- 
state minimum strain path (Fig. 5). However, for larger 
offsets the non-steady-state path decreases to IV’, = 0.10, 
which is substantially lower than the deformation 
accumulated with a constant Wk value (Wk= 0.72). 
Hence, the deformation will start to accumulate with 
much simple shear and, as the accumulated offset 
becomes larger, a greater pure-shear component is 
needed to compensate for the early simple-shear defor- 
mation. For example, consider an offset of 2. If we 
consider a steady-state deformation, we find that 
IV, = 0.82 will minimize the finite strain. If we consider a 
non-steady-state deformation, the average W’k (IV, of 
Passchier, 1988) will also equal 0.82 (Fig. 2~). However, 
the non-steady-state deformation will start to accrue with 
almost simple shear (W,=O.89) and, as the offset 

becomes larger, a greater pure-shear component is 
needed to compensate for the early simple-shear defor- 
mation. 

From the data (Fig. 5) we can approximately describe 
how IV, changes as displacement increases by the fourth- 
order polynomial vorticity function which best fits 
(R2 = 1) the data: 

wk =0.90538 + 0.6833d + 0.06220d2 + 0.00136d” 

+ 0.00080d4, 

where d is the finite displacement or offset across the 
zone. 

It is important to realize that the finite strain ellipse, for 
a given offset, is identical for the non-steady-state (or 
‘incremental’) path and the steady-state path (Fig. 2). The 
reason is that there is only one orientation and ellipticity 
of the finite strain ellipse that will maximize the offset, 
and the shear box can arrive at this position by either a 
steady-state path, a non-steady path that maximized 
offset at each step or even an infinite variety of other 
paths. Therefore, a steady-state IV, = 0.82 for an offset of 
2 provides the same finite strain as a non-steady-state 
which starts at wk incremental =0.89 and decreases to 

wk incremental = 0.61 (Fig. 5). It is important to note that 
although the finite strain is the same for the two cases, the 
deformation history is not. 

Figure 6 is an attempt to explain the difference between 
steady-state and non-steady-state minimum strain paths 
by quantification of the orientation of the infinitesimal 
strain axes (ISA). Because the ISA are fixed for a 
particular steady-state deformation, an offset of 4 (d = 4; 
Fig. 6a) causes a fixed ISA oriented at 24.6” from the 
shear-zone boundary (and one of the flow apophyses). In 
contrast, the non-steady-state path starts with the ISA 
oriented at 31.4” from the shear-zone boundary 
(IV, = 0.89) and the ISA rotates progressively towards 
an angle of 8.8” (I%‘, = 0.30) as the offset approaches 4. 
The orientation of the ISA for the steady-state deforma- 
tion must lie between the starting and ending ISA 

d=O 

(a) - Displacement (b) ___+ Displacement 

Fig. 6. An illustration of the difference between the steady-state and non-steady-state minimum strain paths using the 
orientation ofthe infinitesimal strain axes orientations for finite offset (6) of4 in (a) and 8 in (b). In both cases, the steady-state 
deformation accumulates with a constant orientation of the ISA, but the orientation depends on the finite displacement (and 
IV,; see Fig. 5). The orientation of the ISA thus differs for the two offsets. The non-steady-state path always starts with the 

largest ISA oriented at 31.4, but rapidly progresses to lower orientations with increasing offset. 
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orientations of the non-steady-state path. However, the 
orientation of the steady-state ISA is slightly closer to the 
simple-shear end-member of the non-steady path, 
because of the tendency of a pure-shear component of 
deformation to dominate the finite strain (e.g. Tikoff and 
Fossen, 1995). For a Iarger offset (d= 8; Fig. 6b), there is 
a slightly increased pure-shear component of deforma- 
tion. This is accommodated in steady-state deformation 
with the ISA oriented at 23.2” (IV, = 0.723), i.e. slightly 
lower than the case of offset d= 4. The non-steady-state 
path still starts with the ISA oriented at 3 1.4” (I%‘, = 0.89), 
but the ISA rotates towards an angle of 2.9” (II’, = 0. IO). 
Again, the orientation of the ISA for the steady-state 
deformation lies between the starting and ending ISA 
orientations of the non-steady-state path. 

As explained above, the minimum strain path can also 
be considered a maximum offset path for a given strain. 
For example, if a strain of 4: 1 is recorded, the maximum 
offset of 5 occurs for a steady state IV, =0.74 or an 
average W, = 0.74 for a non-steady-state deformation. 
The offset is thus maximized for a combination of simple 
and pure shear, which implies that the pure-shear 
component adds significantly to the net displacement or 
translation of material above the deforming zone. 
Further, it is important to realize that the W, is ‘biased’, 
so that a Wk=0.74 actually records an approximately 
equal effect of pure and simple shear on the infinitesimal 
deformation (Tikoff and Fossen, 1995). 

DISCUSSION 

Application of the minimum strain path requires that 
the deformation is approximated by two-dimensional, 
sub-simple shear and undergoes non-steady-state defor- 
mation. Further, the boundary conditions put restric- 
tions to the nature of the geological setting. In general, 
two types of boundary conditions may exist for a zone 
where deformation follows a minimum strain path. In the 
first case, deformation is continuous across the sub- 
simple shear zone, as shown in Fig. 7(b). The pure-shear 
component of deformation requires that some elongation 
of the sub-simple shear zone must exist. If strain 
compatibility must be maintained, the pure-shear com- 
ponent that occurs in the deforming zone must also occur 
above and below the deforming zone (Fig. 7b & c). 

Alternatively, the minimum strain path is also appli- 
cable to examples in which strain compatibility does not 
rigorously apply. Discontinuities, such as the existence of 
pervasively fractured rocks or upper and/or lower 
decollements (Fig. 7d & e), act to negate strain compat- 
ibility restrictions. If we relax the lower boundary 
condition to allow for discontinuous deformation, the 
lower block can be left undeformed. This would lead to a 
detachment or stretching fault (Means, 1989) between 
the sub-simple shear zone and the lower part of the 
section (Fig. 7d &e). If we relax both the upper and lower 
boundary conditions, both the upper and lower block 

remain undeformed, and an extruding zone develops in 
between. 

Application to spreading-gliding thrust nappes 

PotentialIy the best example of deformation that is not 
limited by strain compatibility constrictions is the 
gravitationally driven movement of ice sheets over bed- 
rock. The bedrock-ice interface can be treated as a 
detachment, above which the ice is free to undergo any 
type of deformation. Many authors consider this situa- 
tion analogous to gliding and spreading nappes in the 
upper to middte crust. Some of these (e.g. Ramberg, 
1977, 1981, 1989, 1991; Merle, 1986, 1989) investigated 
cases of spreading nappes above dicollement zones both 
numerically and experimentally. The kinematics of 
spreading-gliding nappes commonly indicate non- 
steady-state, sub-simple shear (e.g. Merle, 1986). There- 
fore, it is possible that the minimum strain path could 
describe deformation of this type of system. 

The minimum strain path may also apply to nappes in 
general. A common observation in erogenic collision 
zones is a relatively undeformed basement below a major 
decollement zone (thin-skinned tectonics). In this exam- 
ple, the geometry can be accommodated by the creation 
of a basal thrust (stretching fault) between the unde- 
formed basement and the sub-simple shear zone (Fig. 7e). 
Rigorous strain compatibility restrictions may not apply 
above a major basal thrust that reaches the surface of the 
earth (e.g. Sanderson, 1982). Therefore, the deformation 
within and structurally above a major thrust fault may 
well be influenced by pure shear, as predicted by the 
minimum strain path. 

Application to crustal-scale extension 

Another potential application of the minimum strain 
path involves extensional tectonics, particularly exten- 
sional collapse of gravitationally unstable areas. With a 
free upper surface and a flexible crust-mantle boundary, 
crustal-scale extensional collapse may not be strongly 
limited by strain compatibility requirements. A simplified 
model for crustal-scale deformation for this scenario 
involves an upper part which deforms brittlely (upper 
crust), a middle section (middle crust) which defines a 
sub-simple shear zone near the brittle-ductile transition 
(e.g. Miller et al., 1983) and a lower part beneath the sub- 
simple shear zone (lower crust). There is no reason why 
the deformation within the middle to lower crust should 
be either simple shear or pure shear, or that deformation 
should be steady state. Instead, several authors have 
suggested that lower crustal extensional deformation is 
predominately by pure shearing (McKenzie, 1978; 
Hamilton, 1987; Andersen and Osmundsen, 1994) (Fig. 
7~). Similarly, fault geometries in the upper crustal parts 
of rift systems often indicate overall pure shear. Interest- 
ingly, the model shown in Fig. 7(c) explains non-coaxial 
deformation underlain by a zone of contemporaneous 
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Fig. 7. Visualization of sub-simple-shear deformation zones in the crust, where deformation followed the minimum strain 
path. (a) shows the undeformed section. If strain compatibility must be maintained, the pure-shear component that occurs in 
the deforming zone must also occur both above and below the deforming zone (b and c). In (d) and (e) the lower section is 
undeformed, creating a slip surface or stretching fault (Means, 1989) between the basement and the shear zone. The upper part 
of(b) and (d) could represent a spreading nappe above a sub-simple shear zone (e.g. Ramberg, 1989, 1991). One could also 

envisage a crustal-scale model where the upper crust deforms brittlely above a sub-simple shear zone, and the lower crust 
deforms by pure shear. as illustrated in (c) and (e). 
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coaxial (pure-shear) deformation, whereas pure shear has 
sometimes been assumed to represent an earlier stage of 
extension in collapsed orogens (cf. Andersen and 
Osmundsen, 1994). 

If we allow for discontinuous deformation along the 
lower boundary of the sub-simple shear zone, the lower 
block can be left undeformed. In an extensional setting, 
this would lead to a detachment or stretching fault 
(Means, 1989) between the sub-simple shear zone and 
the lower part of the section (Fig. 7d). 

Application to fabric development 

A shear zone that underwent a strain history given 

by the minimum strain path would undergo a dramatic 
change in W, during deformation. This change may be 
reflected by the orientation and geometry (symmetry) at 
various stages of deformation. Thus, structural features 
that recorded either infinitesimal or small incremental 
deformation (e.g. tension gashes, fibers) would be 
biased towards the later, more coaxial, deformation. 
Likewise, there would be overprinting of earlier formed 
features formed under deformation conditions closer to 
simple shear. The resulting, composite fabrics could 
easily be interpreted as multiple episodes of deforma- 
tion. 

Comparison with Nadai’s minimum work path 

The minimum strain path is important because it 

exhibits that non-steady-state deformations are poten- 

tially important for geometric reasons and are easily 

forward-modeled with computers. However, in this 
context, it should be made clear that the minimum 
strain path differs significantly from Nadai’s minimum 
work path (Nadai, 1963). Nadai’s minimum work path 
investigates the minimum work for a ideally plastic 
substance to reach a final deformation. The minimum 
work path, similar to the minimum strain path, typically 
follows a non-steady-state path. For example, a final 
deformation that follows the minimum work path and 
results in a simple-shear deformation does not have a 
constant W, value during deformation. 

However, unlike the minimum strain path, the final 
deformation is not uniquely specified for the minimum 
work path (Nadai, 1963). Rather, a minimum work path 
exists for any finite deformation: a specified deformation 
that results in a finite strain ratio and orientation will 
have a specified minimum work path. As an example, a 
finite deformation that corresponds to a simple-shear 
deformation of y=2 will follow a non-simple shearing 
( W, # 1) deformation path. Contrarily, the minimum 
strain path predicts the finite strain ratio and orientation, 
and the deformation is always sub-simple shearing. 

CONCLUSIONS 

Particularly questionable in most kinematic analyses 
of shear zones is the assumption of steady-state deforma- 
tion. Steady-state deformation is especially problematic 
for strain histories involving deformation mechanisms 
that change during deformation or changing boundary 
conditions (such as plate motions). Non-steady-state 
deformations can easily be forward-modeled using 
computers, utilizing either knowledge of changing 
boundary conditions or geometric constraints of defor- 
mation. Using the latter approach, we have constructed a 
non-steady-state strain history for the minimum strain 
path. This strain history minimizes the finite strain 
accumulated during sub-simple shearing, for a predeter- 
mined offset of a marker. The kinematic history of this 
deformation is characterized by a relatively rapid change 
from simple shear dominated (W, z 0.9) to a pure shear 
dominated shearing ( W, z 0.1). This change is expected 
to be reflected in fabrics formed at different stages during 
deformation. The minimum strain path may be appli- 
cable to gravitationally induced movement, and other 
flows which are not strongly limited by strain compat- 
ibility requirements. An important observation from the 
analysis is that the pure-shear component adds signifi- 
cantly to the net displacement or translation. Therefore, 
investigation of the minimum strain path indicates that 
some caution is required in balancing cross-sections in 
rift zones or nappe regions without considering internal 
deformation of the system (e.g. Mitra, 1994). 

Acknowledgements-We are thankful for referee comments by C. W. 
Passchier and S. Wallis, which improved the contents of this 
contribution. This study was supported by an National Science 
Foundation EAR-9628381 grant for B. Tikoff. Financial support for 
the project was also provided by the University of Bergen (Bergen 
Museum). 

REFERENCES 

Andersen, T. B. and Osmundsen, P. T. (1994) Deep crustal fabrics and a 
model for the extensional collapse of the southwest Norwegian 
Caledonides. Journal of Structural Geology 16. 1191-1203. 

Bobyarchick, A. R. (1986) The eigenvalues of steady flow in Mohr 
space. Tectonophysics 122, 35-51. 

Fossen, H. and Tikoff, B. (1993) The deformation matrix for simulta- 
neous simple shearing, pure shearing, and volume change, and its 
application to transpression/transtension tectonics. Journal of Sfruc- 
rural Geology IS,41 3-422. 

Hamilton, W. (1987) Crustal extension in the Basin and Range 
Province, southwestern United States. In Continental E.xtensional 
Tectonics, eds M. P. Coward, J. F. Dewey and P. L. Hancock, pp. 
155-I 76. Geological Society of London Special Publication 28. 

Ishii, K. (1995) Estimation of non-coaxialitv from crinoid-tvne pressure 
fringes: comparison between natural and simulated examples. Jour- 
nal of Structural Geolozv 17, 1267-I 278. 

Bang, D. (1994) Vorticit;hetermination, distribution, partitioning and 
the heterogeneity and non-steadiness of natural deformations. Jour- 
nal of Str&uraiGeology 16, 121-l 30. 

Lister. G. S. and Williams. P. F. (1983) The uartitionine ofdeformation 
in flowing rock masses. Tectonophy$ics 9i, l-33. - 

McKenzie, D. (1978) Some remarks on the development of sedimentary 
basins. Earth and Planetary Science Letters 40, 25-32. 

Means, W. D. (1989) Stretching faults. Geologjs 17, 8933896. 



996 H. FOSSEN and B. TIKOFF 

Means, W. D. (I 995) Shear zones and rock history. Tecronophysics 247, 
1577160. 

Means, W. D., Hobbs, B. E., Lister, B. E. and Williams, P. F. (1980) 
Vorticity and non-coaxiality in progressive deformations. Journal of 
Struciural Geology 2, 371-378. 

Merle, 0. (1986) Patterns of stretch trajectories and strain rates within 
spreading-gliding nappes. Tecronophysics 124,21 l-222. 

Merle. 0. (1989) Strain models within spreading nappes. Tectonophy- 
sits 165, 57-71. 

Miller, E. L., Cans, P. B. and Caring, .I. (1983) The Snake Range 
decollement: and exhumed mid-Tertiary ductile-brittle transition. 
Tectonics 2.239-263. 

Mitra, G. (1994) Strain variation in thrust sheets across the Sevier fold- 
and-thrust belt (Idaho-Utah-Wyoming): implications for section 
restoration and wedge taper evolution. Journal of Structural Geology 
16, 585-602. 

Nadai, A. (1963) Theory of Flow and Fracrure of Solids. McGraw-Hill, 
New York. 

Passchier, C. W. (1988) Analysis of deformation paths in shear zones. 
Geologische Rundschau 77,309-3 18. 

Passchier. C. W. (1990) Reconstruction of deformation and flow 
parameters from deformed vein sets. Tectonophysics 180, 1855199. 

Passchier. C. W. and Trouw. R. A. J. (1996) Microtectonics, 289 pp. 
Springer, Berlin. 

. . 

Passchier, C. W. and Urai, J. L. (1988) Vorticity and strain analysis 
using Mohr diagrams. Journal qfStructural Geology 10, 7555763. 

Ptiffner, 0. A. and Ramsay, J. G. (1982) Constraints on geological 
strain rates: arguments from finite strain states of naturally deformed 
rocks. Journal of Geophysical Research 87, 3 1 l-32 I. 

Ramberg, H. (1977) Some remarks on the mechanism of nappe move- 
ment. Geologiska Fareningensi Stockholm Farhandlingar 99. I IO-1 17. 

Ramberg, H. (1981) The role of gravity in erogenic belts. In Thrust and 
Nappe Tectonics, eds K. R. McClay and N. J. Price, pp. 125-140. 
Geological Society of London Special Paper 9. 

Ramberg, H. (1989) A new numerical simulation method applied to 
spreading nappes. Tectonophysics 162, 173-192. 

Ramberg, H. (1991) Numerical simulation of spreading nappes, sliding 
against basal friction. Tectonophysics 188, 159-186. 

Sanderson, D. J. (1982) Models of strain variations in nappes and 
thrust sheets: a review. Tectonophysics 88, 201-233. 

Simpson, C. and De Paor, D. G. (1993) Strain and kinematic analysis in 
general shear zones. Journal of Structural Geology 15, I-20. 

Tikoff, B. and Fossen, H. (1993) Simultaneous pure and simple shear: 
the unified deformation matrix. Tectonophysics 217, 2677283. 

Tikoff, B. and Fossen, H. (1995) The limitations of three-dimensional 
kinematic vorticity. Journal of Structural Geology 17, I77 l--l 784. 

Vissers, R. L. M. (1989) Asymmetric quartz c-axis fabrics and flow 
vorticity: a study using rotated garnets. Journal of Sfructural Geology 
11,231-244. 

Wallis, S. R. (1992) Vorticity analysis in metachert from the Sanbagawa 
Belt, SW Japan. Journalof Strucrural Geology 14,271-280. 


